Peran Penting "Friksi" dalam Pembelajaran di Era Generative AI

  • FX. Risang Baskara Universitas Sanata Darma
Keywords: AI dalam pendidikan, friksi dalam pembelajaran, kecerdasan buatan generatif, literasi AI, pendekatan kritis

Abstract

Seiring dengan meningkatnya popularitas pemanfaatan alat-alat kecerdasan buatan generatif (Generative Artificial Intelligence) seperti ChatGPT dalam dunia pendidikan yang menjanjikan efisiensi dan pengalaman pembelajaran tanpa hambatan ("frictionless"), muncul pula perspektif kritis yang mempertanyakan dampaknya terhadap proses belajar-mengajar yang sesungguhnya. Artikel ini bertujuan untuk menganalisis secara teoritis pentingnya peran "friksi" atau hambatan dalam pembelajaran dan mengapa ia merupakan fitur esensial yang tidak dapat dihilangkan begitu saja dalam konteks pendidikan. Argumen utama yang diajukan adalah bahwa friksi, yang melibatkan upaya, alokasi waktu, dan penerapan pengetahuan sebelumnya, diperlukan agar pembelajaran yang bermakna dan berkelanjutan dapat terjadi. Melalui tinjauan literatur dari para pakar, kerangka teoritis dari pedagogi dan psikologi kognitif, serta diskusi implikasinya bagi para pendidik, artikel ini mengelaborasi bagaimana pendekatan kritis terhadap literasi AI yang justru menambah friksi dalam PROSIDING Vol.1 No.1 2022 SENTIKJAR 2 . sistem pembelajaran dapat memperkaya dan memperdalam proses belajar, alih-alih menghambatnya. Mempertanyakan dampak AI, menelaah keterbatasannya, mengeksplorasi bias yang terkandung, serta mendiskusikan aspek etisnya merupakan aktivitas yang dapat menstimulasi pemikiran kritis dan reflektif. Guru sebaiknya tidak hanya memburu efisiensi waktu melalui otomatisasi dan meniadakan friksi, melainkan memanfaatkan teknologi secara bijaksana sekaligus memperdalam keterlibatan siswa secara bermakna dalam proses pembelajaran.

Downloads

Download data is not yet available.

References

Agarwal, P. K., Bain, P. M., & Chamberlain, R. W. (2012). The value of applied research: Retrieval practice improves classroom learning and recommendations from a teacher, a principal, and a scientist. Educational Psychology Review, 24, 437-448.

Aguiar, J. G., Kinchin, I. M., Correia, P. R., Infante-Malachias, M. E., & Paixão, T. R. (2020). Uncovering and comparing academics’ views of teaching using the pedagogic frailty model as a tool: a case study in science education. Educational Research, 62(4), 434-454.

Aleven, V., Roll, I., McLaren, B. M., & Koedinger, K. R. (2016). Help helps, but only so much: Research on help seeking with intelligent tutoring systems. International Journal of Artificial Intelligence in Education, 26, 205-223.

Bartolomé, A., Castañeda, L., & Adell, J. (2018). Personalisation in educational technology: the absence of underlying pedagogies. International journal of educational technology in higher education, 15, 1-17.

Baskara, R. (2023). Exploring the implications of ChatGPT for language learning in higher education. Indonesian Journal of English Language Teaching and Applied Linguistics, 7(2), 343-358.

Berendt, B., Littlejohn, A., & Blakemore, M. (2020). AI in education: Learner choice and fundamental rights. Learning, Media and Technology, 45(3), 312-324.

Bezanilla, M. J., Fernández-Nogueira, D., Poblete, M., & Galindo-Domínguez, H. (2019). Methodologies for teaching-learning critical thinking in higher education: The teacher’s view. Thinking skills and creativity, 33, 100584.

Bjork, E. L., & Bjork, R. A. (2011). Making things hard on yourself, but in a good way: Creating desirable difficulties to enhance learning. Psychology and the real world: Essays illustrating fundamental contributions to society, 2(59-68).

Buckingham, D. (2019). Teaching media in a ‘post-truth’age: fake news, media bias and the challenge for media/digital literacy education/La enseñanza mediática en la era de la posverdad: fake news, sesgo mediático y el reto para la educación en materia de alfabetización mediática y digital. Culture and Education, 31(2), 213-231.

Castañeda, L., & Selwyn, N. (2018). More than tools? Making sense of the ongoing digitizations of higher education. International Journal of Educational Technology in Higher Education, 15, 1-10.

Chi, M. T., & Wylie, R. (2014). The ICAP framework: Linking cognitive engagement to active learning outcomes. Educational psychologist, 49(4), 219-243.

Conrad, K. (2024, May 28). Friction v. "Magic": The lure of AI "time-saving" tools for teachers. Katie Conrads Writes [Blog post]. https://katieconradwrites.com/friction-v-magic/

Craik, F. I., & Lockhart, R. S. (1972). Levels of processing: A framework for memory research. Journal of verbal learning and verbal behavior, 11(6), 671-684.

D’Mello, S., Lehman, B., Pekrun, R., & Graesser, A. (2014). Confusion can be beneficial for learning. Learning and Instruction, 29, 153-170.

Dillenbourg, P. (2016). The evolution of research on digital education. International Journal of Artificial Intelligence in Education, 26, 544-560.

Dunlosky, J., Rawson, K. A., Marsh, E. J., Nathan, M. J., & Willingham, D. T. (2013). Improving students’ learning with effective learning techniques: Promising directions from cognitive and educational psychology. Psychological Science in the Public interest, 14(1), 4-58.

Elam, M. (2023). Poetry Will Not Optimize; or, What Is Literature to AI?. American literature, 95(2), 281-303.

Epp, C. D., & Bull, S. (2015). Uncertainty representation in visualizations of learning analytics for learners: Current approaches and opportunities. IEEE Transactions on Learning Technologies, 8(3), 242-260.

Ericsson, K. A., & Harwell, K. W. (2019). Deliberate practice and proposed limits on the effects of practice on the acquisition of expert performance: Why the original definition matters and recommendations for future research. Frontiers in psychology, 10, 470063.

Facer, K. (2018). Governing education through the future. Making Education: Material School Design and Educational Governance, 197-210.

Finn, B., & Metcalfe, J. (2010). Scaffolding feedback to maximize long-term error correction. Memory & cognition, 38(7), 951-961.

Hadwin, A., Järvelä, S., & Miller, M. (2017). Self-regulation, co-regulation, and shared regulation in collaborative learning environments. In Handbook of self-regulation of learning and performance (pp. 83-106). Routledge.

Kalyuga, S. (2011). Cognitive load theory: How many types of load does it really need?. Educational psychology review, 23, 1-19.

Knox, J. (2020). Artificial intelligence and education in China. Learning, Media and Technology, 45(3), 298-311.

Koedinger, K. R., Booth, J. L., & Klahr, D. (2013). Instructional complexity and the science to constrain it. Science, 342(6161), 935-937.

Koedinger, K. R., Brunskill, E., Baker, R. S., McLaughlin, E. A., & Stamper, J. (2013). New potentials for data-driven intelligent tutoring system development and optimization. AI Magazine, 34(3), 27-41.

Kyndt, E., Dochy, F., Struyven, K., & Cascallar, E. (2012). Looking at learning approaches from the angle of student profiles. Educational Psychology, 32(4), 493-513.

Luckin, R., & Cukurova, M. (2019). Designing educational technologies in the age of AI: A learning sciences‐driven approach. British Journal of Educational Technology, 50(6), 2824-2838.

Luckin, R., & Holmes, W. (2016). Intelligence unleashed: An argument for AI in education.

Mangaroska, K., & Giannakos, M. (2018). Learning analytics for learning design: A systematic literature review of analytics-driven design to enhance learning. IEEE Transactions on Learning Technologies, 12(4), 516-534.

Mayer, R. E. (2019). Computer games in education. Annual review of psychology, 70, 531-549.

Metcalfe, J. (2011). Desirable difficulties and studying in the region of proximal learning. Successful remembering and successful forgetting: A Festschrift in honor of Robert A. Bjork, 259-276.

Nind, M., & Lewthwaite, S. (2018). Methods that teach: developing pedagogic research methods, developing pedagogy. International Journal of Research & Method in Education, 41(4), 398-410.

Noesgaard, S. S., & Ørngreen, R. (2015). The Effectiveness of E-Learning: An Explorative and Integrative Review of the Definitions, Methodologies and Factors that Promote e-Learning Effectiveness. Electronic Journal of E-learning, 13(4), 278-290.

Panadero, E. (2017). A review of self-regulated learning: Six models and four directions for research. Frontiers in psychology, 8, 250270.

Pangrazio, L., & Sefton-Green, J. (2021). Digital rights, digital citizenship and digital literacy: What’s the difference?. NAER: Journal of New Approaches in Educational Research, 10(1), 15-27.

Reiser, R. A. (2001). A history of instructional design and technology: Part I: A history of instructional media. Educational technology research and development, 49(1), 53-64.

Selwyn, N. (2016). Is technology good for education?. John Wiley & Sons.

Sergis, S., & Sampson, D. G. (2017). Teaching and learning analytics to support teacher inquiry: A systematic literature review. Learning analytics: Fundaments, applications, and trends: A view of the current state of the art to enhance e-Learning, 25-63.

Shabani, K., Khatib, M., & Ebadi, S. (2010). Vygotsky's zone of proximal development: Instructional implications and teachers' professional development. English language teaching, 3(4), 237-248.

Sisi, L., Baocun, L., & Aoun, J. E. (2018). Robot-proof: higher education in the age of artificial intelligence. Higher Education, 1, 1-3.

Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning and instruction, 4(4), 295-312.

Sweller, J. (2010). Element interactivity and intrinsic, extraneous, and germane cognitive load. Educational psychology review, 22, 123-138.

Sweller, J., van Merriënboer, J. J., & Paas, F. (2019). Cognitive architecture and instructional design: 20 years later. Educational psychology review, 31, 261-292.

Tempelaar, D., Rienties, B., & Nguyen, Q. (2021). The contribution of dispositional learning analytics to precision education. Educational Technology & Society, 24(1), 109-122.

Thibodeaux, T., Harapnuik, D., & Cummings, C. (2019). Student Perceptions of the Influence of Choice, Ownership, and Voice in Learning and the Learning Environment. International Journal of Teaching and Learning in Higher Education, 31(1), 50-62.

Tsai, Y. S., Perrotta, C., & Gašević, D. (2020). Empowering learners with personalised learning approaches? Agency, equity and transparency in the context of learning analytics. Assessment & Evaluation in Higher Education, 45(4), 554-567.

Vygotsky, L. S., & Cole, M. (1978). Mind in society: Development of higher psychological processes. Harvard university press.

Wass, R., & Golding, C. (2014). Sharpening a tool for teaching: the zone of proximal development. Teaching in Higher Education, 19(6), 671-684.

Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education–where are the educators?. International Journal of Educational Technology in Higher Education, 16(1), 1-27.

Zimmerman, B. J. (2000). Attaining self-regulation: A social cognitive perspective. In Handbook of self-regulation (pp. 13-39). Academic press.

Published
2024-10-14
How to Cite
Baskara, F. R. (2024). Peran Penting "Friksi" dalam Pembelajaran di Era Generative AI. Prosiding Seminar Nasional Fakultas Tarbiyah Dan Ilmu Keguruan IAIM Sinjai, 3, 8-17. https://doi.org/10.47435/sentikjar.v3i0.3130