Formulas For Calculating The Areas Of Regiones Bounded By The Quadratic Function And The Line, Two Quadratic Functions
Abstract
This article brings formulas for finding the areas of regiones bounded by the quadratic function and the x-axis, the quadratic function and the line y=kx+l , two quadratic functions and they are generalized. The generated formulas can be used in problems concerning the calculation of the area of the region bounded by the quadratic equation in the definite integral. In the secondary schools mathematics course, the define integral topic presents problems of the quadratic function concerning with the area. The article is viewed for the general equation of the quadratic function and induced a formula related to the discriminant, roots and prime coefficient of the quadratic polinomial. Vieta’s theorem was used to create formulas. From the geometric point of view, the area bounded by the x-axis and the quadratic function equal to 2/3 part of the rectangle, which sides equal to the subtraction of quadratic polinomial roots and ordinate of vertex of a quadratic function (parabola). In conclusion formula 2 is induced. Since the area of the region is a positive, its absolute value is used in the formula.
Downloads
References
Bardi, J. S. (2009). The calculus wars: Newton, Leibniz, and the greatest mathematical clash of all time. Hachette UK.
Ben-Ari, M. (2022). Solving Quadratic Equations. In: Mathematical Surprises. Springer, Cham. doi:10.1007/978-3-031-13566-8_7
Bergsten, C. (2004). Beyond the representation given: The parabola and historical metamorphoses of meanings. (10), 37-49.
Camacho, M., Depool, R., & Santos-Trigo, L. M. (2004). Promoting Students Comprehension of Definite Integral and Area Concepts Through the Use of Derive Software”. Proceedings of the 26 PME-NA, 2, 447-454. Proceedings of the 26 PME-NA, (стр. 447-454).
Danial, D. (2020). KETERLAKSANAAN KURIKULUM 2013 DALAM MATA PELAJARAN MATEMATIKA DI SMP NEGERI 33 MAKASSAR. JTMT: Journal Tadris Matematika, 1(1), 27-32. doi:10.47435/jtm.v1i1.395
Díaz, V., Aravena, M., & Flores, G. (2020). Solving problem types contextualized to the quadratic function and error analysis: A case study. EURASIA Journal of Mathematics, Science and Technology Education, 16(11). doi:10.29333/ejmste/8547
Dijksterhuis, E.J. translated by C.Dikshoorn. (1987). Archimedes. Princeton University.
Ely, R., & Jones, S. R. (2023). The teaching and learning of definite integrals: A special issue guest editorial. International Journal of Research in Undergraduate Mathematics Education, 9(1), 1-7. doi:10.1007/s40753-023-00214-2
Grigorieva, E. &. (2015). Polynomials. In: Methods of Solving Nonstandard Problems. Birkhäuser, Cham. doi:10.1007/978-3-319-19887-3_2
Hidayah, N., Danial, D., & Takdir, T. (2021). Diagnostik Kesulitan Belajar Mahasiswa Pada Mata Kuliah Kalkulus Program Studi Tadris Matematika IAIM Sinjai. JTMT: Journal Tadris Matematika, 2(2), 31-39. doi:10.47435/jtmt.v2i2.728
Hornsby, E. J. (1990). Geometrical and Graphical Solutions of Quadratic Equations. The College Mathematics Journal, 21(5), 362-378. doi:10.1080/07468342.1990.11973334
Kiat, S. E. (2005). Analysis of Students’ Difficulties in Solving Integration Problems. The Mathematics Educator, 9(1), 39-59. Получено из fliphtml5.com/aqlj/sogn/basic
Linsky, J., Western, B., & Nicholson, J. (2018). Complete Pure Mathematics 1 for Cambridge International AS & A level. Oxford University Press - Children.
Lu, J. (2023). Who Contributed More on Calculus? Newton or Leibniz? Studies in Social Science & Humanities, 2(7), 22-25. doi:10.56397/sssh.2023.07.04
Parwati, G., Hadjar, I., Pathuddin, P., & Alfisyahra, A. (2023). Analysis of the Error Students in Solving Story Problems on Quadratic Equation Material Based on Newman Stages. JTMT: Journal Tadris Matematika, 4(02), 208-220. doi:10.47435/jtmt.v4i02.1976
Powers, J. (2020). Did Archimedes Do Calculus?
Rogers, L., & Pope, S. (2015). A brief history of quadratic equations for mathematics educators. Proceedings of the British Society for Research into Learning Mathematics, 35(3), 90-95.
Serhan, D. (2015). Students’ understanding of the definite integral concept. International Journal of Research in Education and Science (IJRES). 1(1), 84-88.
Shinariko, L. J., Hartono, Y., Yusup, M., Hiltrimartin, C., & Araiku, J. (2021). Mathematical Representation Ability on Quadratic Function Through Proof Based Learning. In 4th Sriwijaya University Learning and Education International Conference (SULE-IC 2020) (стр. 653-659). Atlantis Press.
Susilo, B. E., Darhim, D., & Prabawanto, S. (2019). Students critical thinking skills toward concepts differences in finding area of a plane region and definite integral. Unnes Journal of Mathematics Education, 8(1), 1-7. https://journal.unnes.ac.id/sju/i. Unnes Journal of Mathematics Education, 8(1), 1-7. Получено из https://journal.unnes.ac.id/sju/i
Taub, D. (2022). A Brief History of Quadratic Equations. Universitetstryckerie.
Tendere, J., & Mutambara, L. H. N. (2020). An analysis of errors and misconceptions in the study of quadratic equations. European Journal of Mathematics and Science Education, 1(2), 81-90. doi:10.12973/ejmse.1.2.81
Абдієва, Ш., & Тургунбаєв, Р. (2023). THEOREMS ON THE NUMBER OF ROOTS OF A CUBIC EQUATION AND THEIR LOCATION AS A MEANS OF DEVELOPING STUDENTS' VISUAL THINKING/10.3110/2413-1571-2023-038-4-001. Фізико-математична освіта, 38(4), 7-13. doi:10.31110/2413-1571-2023-038-4-001
Лукьянова, Т. И., & Мансурова, Е. Р. (2017). Интеграл в школьном курсе математики. Физико-математические образование: проблемы и перспективы: сб. статей.–Елабуга. Изд-во Казан. Ун-та, (стр. 51-55).
Муравина, О., & Муравин, Г. (2020). Алгебра и начала математического анализа. 11 класс. Базовый уровен. Litres.
Copyright (c) 2024 shoira Abdiyeva

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.